Michael Krautblatter Dissertation Titles

Convened Sessions


Moore, Petley, Dorren, Crosta and Agliardi (2013): Rockfall, rock slides and rock avalanches. European Geoscience Union, Vienna.

(this rockfall session that Dr.J. Moore (ETH) and I initiated in 2009 has now become one of the largest Natural Hazards sessions with an audience of 200 people, 12 talks and typically 25 posters.)

Moore, Krautblatter, Dorren, Crosta and Agliardi (2012): Rockfall, rock slides and rock avalanches. European Geoscience Union, Vienna.

Krautblatter, Moore, Dorren, Crosta and Agliardi (2011): Rockfall, rock slides and rock avalanches. European Geoscience Union, Vienna.

Krautblatter, Moore, Rosser, Dorren, Berger, Volkwein (2010). Rockfall I&II: Detachment, trajectory modelling, deposition and mitigation strategies.European Geoscience Union, Vienna.

Krautblatter and Otto (2009): FS97: Fluss- und Kreislaufprozesse in geomorphologischen Systemen.Geographentag, Vienna.

Moore, Krautblatter, Löw (2009): Processes and rates of rock slope erosion: weathering, detachment, and transport. European Geoscience Union, Vienna.

Invited talks and Guest Lectures


Krautblatter (06/2014). Why permafrost rocks become unstable and how this affects natural hazards in space and time. Key-Note at 4th the European Conference on Permafrost EUCOP, Evora.

Krautblatter (03/2014). Permafrost and Climate Change. Invited talk, 7th Sino-German Frontiers of Science Symposium, Peking.

Krautblatter, Kemna, Funk & Guenzel (12/2012). Quantitative geophysics in permafrost rock walls and their explanatory power for geomechanics.  American Geophysical Union, San Francisco.

Krautblatter, Wunderlich, Pail, Thuro et al. (11/2012). Multirisk-Ansätze für Naturgefahren im Hochgebirge. DFG-Zukunftskommission, Rundgesprächs-Initiative –  approved by DFG commission .

Krautblatter (12/2011). Permafrost und Hangbewegungen in den Alpen. Geowissenschaftliches Seminar TU München, Fak. Bauing.-Vermess./Ingenieurgeol. (Prof. K. Thuro), Invited talk.

Krautblatter (10/2011). Permafrost im globalen Umweltwandel. University of Vienna. Invited Guest Lecture.

Krautblatter (10/2011). Warum Permafrost-Felsen instabil werden. Geologie Universität Innsbruck and alpS, Invited talk. 

Krautblatter (09/2011). Climate change and enhanced rockfall activity in the European Alps. Geomorphology Laboratory (Profs. N. Matsuoka / A. Ikeda), University of Tsukuba, Japan, Invited talk.

Krautblatter (09/2011). Magnitude and frequency of rockfalls in the Late Holocene - implications for hazard and risk. Fragile Earth, Munich, Invited talk.

Krautblatter (09/2011). Why thawing permafrost rocks can become unstable. Fragile Earth, Munich, Invited talk.

Krautblatter (06/2011). Warum tauende Permafrostfelsen instabil werden können: ein geomechanisches Konzept und Laborversuche. Experimental Geophysics Section, University of Bochum (Prof. J. Renner), Invited talk.

Krautblatter (03/2011). A geomechanical concept for the destabilisation of permafrost rocks. ETH Zurich, Engineering Geology, Invited talk.

Krautblatter (2009). “Rock slope erosion“ in response to climate change. Universidad Nacional Autónoma de México, Invited talk.

Krautblatter (2009). „Rock slope erosion“ im Zuge des Klimawandels mit Beispielen aus den Deutschen, Schweizer, Österreichischen und Französischen Alpen. Geol.-geogr. Institutskolloquium Salzburg, Invited talk.

Krautblatter (2008). Auswirkungen von veränderter Niederschlagsregimen und von Permafrostdegradation auf Hangformung in den Alpen. Physisch-Geographisches Institutskolloquium der Universität Halle, Invited talk.

Krautblatter (2008). Permafrost in Felsen: Einflussgrößen, Detektion und Auswirkungen auf Hanginstabilität am Beispiel Steintälli (Matter-/Turtmanntal, CH) und (Zugspitze, D/Ö). Bayerische Akademie der Wissenschaften, Würzburg, Invited talk.

Krautblatter (2007). Steinschlag, Felsstürze und Bergstürze - nehmen sie infolge des Klimawandels zu und können wir sie vorhersagen? Geographisches Kolloquium der Universität Wien, Invited talk.

Krautblatter (2007). Geophysical investigations of permafrost-affected bedrock. La dégradation du Permafrost. Séminaire du laboratoire EDYTEM. April 2, 2007, Université Bourget du Lac, France, Invited talk.

Krautblatter (2007). Welchen Einfluss hat die vor 2.7 Ma aufkommende Klimavariabilität für den alpinen Sedimentfluss? DFG-Rundgespräch Erdoberflächenprozesse. 30. März 2007, Heidelberg, Germany, Invited talk.

Krautblatter (2006). Steinschlaggefahr, -risiko und wirksame Schutzmaßnahmen/-bauten: Eine Neueinschätzung basierend auf einer vierjährigen Steinschlagmessung in den bayerischen Alpen. 29. Baugrundtagung in Bremen, Invited talk.

Talks


Krautblatter et al. (04/2013). Temporal and spatial dynamics of retrogressive thaw slumps revealed by 2D/3D geophysics and mechanical implications (Herschel Island, western Canadian Arctic). European Geoscience Union, Vienna.

Draebing and Krautblatter (04/2013). An ice pressure time-average model for p-wave measurements in permafrost rocks. European Geoscience Union, Vienna.

Krautblatter, Funk und Günzel (11/2012). Warum Permafrostfelsen instabil werden. AK Permafrost, Potsdam.

Krautblatter  (09/2012). Rock slope failure and climate change in the European Alps: processes and mechanical explanations.  The Sino-Germany Workshop (GZ849) Monitoring and Early Warning of Geohazards under Global Climate Changes. Beijing, China.

Krautblatter (09/2012). Magnitude and frequency spectra of rock slope failures: determination and temporal variability. Sino-German Symposium „Mass Movements in the Three-Gorges Area – from Recognition to Monitoring. Wuhan, China.

Draebing and Krautblatter (06/2012). The Influence of Ice-Pressure on P-Wave Velocity in Alpine Low-Porosity Rocks: A Modified Time-Average Model. 10th Int. Conf. on Permafrost, Salekhard, RUS.

Krautblatter (06/2012). Steinschlag, Felsstürze und Bergstürze in den bayerischen Alpen: Bedeutung, Vorhersage und die Rolle des Klimawandels. Ingenieurgeologischer Workshop: Monitoring, Analyse und Frühwarnung von Hangbewegungen. Technische Universität München.

Pudasaini and Krautblatter (04/2012). A Real Two-Phase Mechanical Model for Rock-Ice Avalanches. European Geoscience Union, Vienna.

Krautblatter and Kemna (04/2012). Quantitative electrical imaging in permafrost rock walls. European Geoscience Union, Vienna.

Krautblatter, Kemna and Dräbing (05/2011). Geophysical methods for the analysis and monitoring of unstable permafrost rocks. Interdisciplinary Workshop of the Rockfall Expert Network, Innsbruck, Austria.

Krautblatter and Funk (04/2011). Why permafrost rocks become unstable. European Geoscience Union, Vienna.

Krautblatter, Moser, Kemna, Verleysdonk, Funk and Dräbing (2010). Climate change and enhanced rockfall activity in the European Alps. GeoDarmstadt.

Krautblatter and Funk (2010). A rock-/ice mechanical model for the destabilisation of permafrost rocks and first laboratory evidence for the “reduced friction hypothesis.” 3rd European Permafrost Conference, Svalbard, Spitzbergen.

Krautblatter, Verleysdonk, Flores-Orozco and Kemna (2009). A step towards temperature-referenced ERT: Laboratory-calibrated ERT of seasonal changes in permafrost rock walls at the Zugspitze (D/A). European Geoscience Union, Vienna.

Krautblatter and Verleysdonk (2009). Saisonales Auftauverhalten von Felspermafrost: Elektrische Resistivitätstomographien (ERT) und Felstemperaturen eines 3-jährigen Monitorings (2007-2009) an der Zugspitze (D/A). Geographentag, Vienna.

Krautblatter (2009). Estimating the impact of climate change on rockfall activity in the European Alps, Joint Workshop Japan/Germany: Climate and Human Impact on High Mountain Geosystems, Schneefernehaus, D.

Krautblatter, Heißel, Moser, Nittel und Verleysdonk (2009). Bliggferner 2007 – Analyse und Tomographie im Anrissbereich eines Bergsturzereignisses zur Einschätzung des Gefährdungspotentials von Permafrostfelsen im Kaunertal. Geoforum Umhausen.

Krautblatter (2008). 3D-tomographies of rock permafrost evolution over time derived from seismic and resistivity measurements. June 29 – July 3, 2008, Fairbanks, Alaska, US.

Krautblatter (2008). Permafrost aggradation in the rock crest „Steintälli“ as a multiannual response to cool summers recorded by a three-year monitoring of rock permafrost by 2D/3D-ERT and refraction seismics. Eurpoean Geoscience Union, Vienna.

Krautblatter, Schädler, Moser and Keller (2008). Characterising vertical and horizontal sediment flux in alpine geosystems: Caine’s “geomorphic work” vs. Barsch’s “geomorphic activity” concept reanalysed by a multiannual record in two highly-active catchments (Reintal and  Lahnenwiesgraben, German Alps). 3. Mitteleuropäische Geomorphologietagung, Salzburg.

Krautblatter (2008). Felsstabilitätsbewertung durch seismische und elektrische 2D und 2.5D-Tomographien an Permafrostfelsen: Laborkalibrierung, Fehlermodelle, Inversionsoptimierung und Tempertaturreferenzierung. Jahrestagung des AK Permafrost, AWI, Potsdam.

Krautblatter (2008). Detecting rock mass stability relevant parameters from ERT and seismics. Int. GriAAlp Meeting: Measuring and modelling instability factors of permafrost-affected bedrock, Zurich.

Hauck, Delaloye, Farbrot, Frauenfelder, Hilbich, Kneisel, Krautblatter, Nyenhuis,  Otto und Roer (2007). Ice content and ice origin of mountain permafrost occurrences using electrical resistivity tomography. Eurpoean Geoscience Union, Vienna.

Krautblatter, M.; Hauck, C.; Wolf, S. (2007). Geophysical 2D and 3D-monitoring of permafrost in rock walls. Eurpoean Geoscience Union, Vienna.

Krautblatter, M.; Moser, M.; Schrott, L.; Wolf (formerly Poppel), J. (2007). A detailed record of sediment transfer and geomorphic work of small, medium and high magnitude-rockfalls in an Alpine Catchment (Reintal, German Alps). Eurpoean Geoscience Union, Vienna.

Krautblatter (2007). Das "Energiekonzept" zur Charakterisierung des Sedimentflusses alpiner Geosysteme. Probleme und Perpektiven aufgezeigt an zwei alpinen Einzugsgebieten. Deutscher Geographentag, Bayreuth.

Krautblatter (2007). Evolution of alpine slopes over time: what do present process-based measurements tell us? Joint Workshop "Source to Sink Sedimentary Cascades: Perspectives Germany/Japan", Sapporo, Japan. 

Krautblatter (2007). Die Potentiale von ERT und Seismik zur Erkennung von Permafrost in Felswänden. "Klimaveränderung im Hochgebirge". Swiss Snow Ice and Permafrost Society. July 13-15, 2007, Samedan, CH.

Krautblatter and Dikau (2006). How can we extract the information gathered in existing rockfall studies for sediment budget estimations - A conceptual approach. Eurpoean Geoscience Union, Vienna.

Krautblatter und Moser (2006). Primär und sekundär dominierte Steinschlagregime und deren Implikationen für Gefahrenpotential, Risikoanalyse und Schutzmaßnahmen. 8. Geoforum, Oct. 8-10, 2006, Umhausen, A.

Krautblatter, Hauck und Dikau (2006) Detektion und Monitoring von Permafrostvorkommen in Felsen: Geophysikalische Methoden und Implikationen für Massenbewegungen. Jahrestagung AK Geomorph., Dresden.

Krautblatter and Dikau (2005). How can we extrapolate from existing studies on back-weathering (rockwall retreat) and rockfall supply in time and space? - A conceptual approach. SEDIFLUX Meeting, Durham, UK.

Krautblatter and Moser (2005). Will we face an increase in hazardous secondary rockfall events in response to global warming in the foreseeable future? Global Change in Mountain Regions, Perth, Scotland.

In this project, the influence of snow cover on thermal and mechanical processes in steep permafrost rockwalls was systematically researched. (1) Snow distribution is controlled by micro-topographical factors. Increasing slope angle does not decrease snow depth, however, snow distribution is more heterogeneously in steeper terrain. Furthermore, snow deposition show similar patterns of snow depth and distribution from year to year with maximum depth between 1.5 and 2 m at Gemsstock and up to 3.8 m at Steintaelli. In addition, snow ablation is influenced by local shading effect which can reverse the usual earlier ablation on the south-exposed slopes. (2) The timing, initial thickness and duration of the snow cover strongly influence the thermal regime of rockwalls. At both research areas, a cooling effect by late snow cover onset and long-term insulation and a warming effect by early snow cover onset were observed. The insulation by snow cover is influenced by snow cover properties and started at a threshold of 0.2 m where snow depth becomes the major factor controlling the thermal regime. (3) To address spatial and temporal variation of active-layer, we developed a novel laboratory-calibrated SRT approach. The approach was combined with thermal data from borehole and temperature modelling and demonstrated that the cooling effect of a long lasting snow cover preserves frozen conditions or decreases active layer thaw while areas of the earlier snow disappearance show much deeper active or permafrost absence. (4) The mechanical regime strongly reflects the snow cover and the thermal. During snow-free periods, high frequency thermal expansion and contraction occurred which can be amplified by volumetric expansion when temperature drops below -10°. In contrast, insulating snow prevents thermal expansion or contraction and favours ice segregation. Basal ice layer formation prevents snowmelt infiltration into open joints in spring and, thus, prevents the development of perched groundwater levels. In addition, ice filling in fractures is required to prevent water seepage from fractures and hydrostatic pressure development. Rock fractures show an oscillating behaviour without persistent crack opening is observed, however, high-frequent high-magnitude thermal expansion and contraction and low frequent high-magnitude ice segregation can lead to rock fatigue which reduces long-term rock stability. (5) We united our findings into a rock-ice mechanical model and a conceptual model to explain the influence of snow cover on thermal and mechanical processes in permafrost rockwalls. On seasonal scale, snow cover controls the timing of rock instabilities which can occur during two time windows of instability in summer and autumn. On a long-term scale, rock bridge cracking due to ice segregation and or thermal stress can change system state from rock-mechanical to more sensitive ice-mechanical state. Increased active-layer thaw due to enhanced warming by climate change can further increase sensitivity to failure.  

Part 1: internal response (German Working Group)

Part 2: external forcing (Swiss Working Group)  

Funding: German Research Foundation (DFG) and Swiss National Fund (SNF)

Amount of Funding: ~400 k€ (TU part: 200 k€)

Contributing People:

  • Michael Krautblatter (Main applicant Part 1, Lead, Technische Universität München)
  • Richard Dikau (Co-applicant Part 1, PhD supervisor, University of Bonn)
  • Daniel Draebing (PhD student Part 1, University of Bonn, now TUM)
  • Hailiang Jia (guest PhD student, University of Wuhan, China)
  • Marcia Phillips (Main applicant Part2, Swiss project leader, SLF Davos)
  • Martin Hoelzle (Co-applicant Part 2, University of Fribourg)
  • Stephan Gruber (Co-applicant Part 2, Carlton University)
  • Anna Haberkorn (PhD Student Part 2, SLF Davos, University of Fribourg)
  • Robert Kenner (technical assistant Part 2, SLF Davos)
  • Hansueli Rhyner (technical assistant Part 2, SLF Davos)

Key Publications:

  • Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R.and M. Phillips (accepted): Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes. Submitted to Permafrost and Periglacial Processes.
  • Draebing, D. (2016): Application of Refraction Seismics in Permafrost Studies: A review. Earth Science Reviews 155: 136-152. http://dx.doi.org/10.1016/j.earscirev.2016.02.006
  • Phillips, M., Haberkorn, A., Draebing, D., Krautblatter, M., Rhyner, H. and R. Kenner (2016): Seasonally intermittent water flow through fractures in a rock ridge: Gemsstock, central Swiss Alps. Cold Regions Science and Technology 125: 117-127. http://dx.doi.org/10.1016/j.coldregions.2016.02.010
  • Krautblatter, M. and K. Leith (2015): Glacier- and permafrost-related slope instabilities. In: C. Huggel, M. Carey, J.J. Clague, A. Kääb (Eds.): The High-Mountain Cryosphere. Cambridge University Press, Cambridge, 147-165.
  • Jia, H., W. Xiang, and M. Krautblatter (2015): Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles. Permafrost and Periglacial Processes 26(4), 368-377. http://dx.doi.org/10.1002/ppp.1857
  • Draebing, D., Krautblatter, M. and R. Dikau (2014): Interaction of thermal and mechanical processes in steep permafrost rock walls: a conceptual approach. Geomorphology 266:226-235. http://dx.doi.org/10.1016/j.geomorph.2014.08.009
  • Krautblatter, M. and D. Draebing (2014): Pseudo 3D – P-wave refraction seismic monitoring of permafrost in steep unstable bedrock. Journal of Geophysical Research – Earth Surface 119 (2): 287-299. http://dx.doi.org/10.1002/2012JF002638
  • Krautblatter, M., Funk, D. and F.K. Günzel (2013): Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surface Processes and Landforms 38(8), 876-887. http://dx.doi.org/10.1002/esp.3374
  • Draebing, D. and M. Krautblatter (2012): P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model. The Cryosphere 6:1163-1174. http://dx.doi.org/10.5194/tc-6-1163-2012

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *